P+F接近开关因为日常每个人的驾驶习惯不同,所以刹车片消耗速度也有一定差别,通常,一副新的刹车片大约可以使用3-6万公里。而如何判断刹车片的状态,最简单的方法就是当发现刹车片报警灯亮起时,应尽快更换。其实,这种刹车片报警原理是将报警线插入刹车片传感器中,如果刹车片磨损到传感器的位置,传感线与刹车盘搭铁接触会导致电阻增大,从而产生较大的电流,最终点亮报警灯。
(P+F 电感式传感器 NBN12-18GM50-E0-3M)
12 mm,非齐平,更远的工作距离,温度范围扩大
-40 ... +85 °C,工作电压范围扩大,具有多种安装选择,使用灵活
开关功能 : 常开 (NO) 输出类型 : NPN 额定工作距离 : 12 mm 安装 : 非齐平 输出极性 : DC 确保操作距离 : 0 ... 9,72 mm 驱动器件 : 软钢,如 1.0037、SR235JR(之前为 St37-2)
36 mm x 36 mm x 1 mm 衰减系数 rAl : 0,49 衰减系数 rCu : 0,46 衰减系数 r304 : 0,75 衰减系数 rBrass : 0,55 输出类型 : 3 线 工作电压 : 5 ... 36 V 开关频率 : 0 ... 1300 Hz 迟滞 : 类型 5 % 反极性保护 : 反极性保护 短路保护 : 脉冲式 电压降 : ≤ 1 V 工作电流 : 0 ... 200 mA 断态电流 : 最大 20 µA 空载电流 : ≤ 10 mA 可用前的时间延迟 : ≤ 10 ms 开关状态指示灯 : 黄色 LED MTTFd : 1708 a 任务时间 (TM) : 20 a 诊断覆盖率 (DC) : 0 % PWIS 符合性 : VDMA 24364-C1/T100°C-W 符合标准 : EAC 符合性 : TR CU 020/2011 防护等级 : II UL 认证 : cULus 认证,一般用途,2 类电源 CCC 认证 : 额定电压 ≤ 36 V 时,产品不需要 CCC 认证/标记 环境温度 : -40 ... 85 °C (-40 ... 185 °F) 存储温度 : -40 ... 85 °C (-40 ... 185 °F) 连接类型 : 电缆 外壳材料 : 黄铜 , 白青铜 带涂层 感应面 : PBT , 绿色 防护等级 : IP68 电缆 : 质量 : 137 g 拧紧扭矩 : 0 ... 30 Nm 供货范围 : 供货范围包含 2 颗自锁螺母
聊城接近开关 ECU对两个或两个以上具有相互联系的传感器进行数据比较,当发现两个传感器信号间的逻辑关系违反设定条件时,就断定其一或两者有故障。例如:ECU检测到发动机转速大于3000rmp,而节气门位置传感器输出信号小于5%,对于发动机这种关系不可能存在,ECU就判定节气门位置传感器出现故障。
订货接近开关通过 HT 可视化系统将温湿度探测器、氧气传感器、有害气体和积水监测、自动报警和灭火等各种设备的运行状态展示。轮播报警触发的情况,做到全方位监测无死角,全时段监测不遗漏,帮助管理者及时发现问题、解决问题,排除隐患。
P+F接近开关总结:通过故障分析,上述案例中的车辆出现安全气囊故障的情况,是由于安全气囊传感器故障所致,处理方法可参考解决方案1。案例中的故障情况属于个例,车主无需担心。另外,我们建议车主定期保养车辆,发现问题及时解决。
聊城接近开关插入钥匙一拧是解锁,第二次拧钥匙是汽车通电和让车辆5秒左右的电子设备自行检查时间,第三次拧钥匙是点火(地球人都知道)。可是点火后发现安全气囊灯还是亮着的是怎么回事?安全气囊灯亮起是提示我们要么是安全气囊传感器故障,要么是数据读取错误,要么是安全气囊已经弹了出来。这个时候我们首先要从最容易地方入手,检查安全气囊数目。
订货接近开关 当ECU检测时发现某一输入信号在一定的时间内没有发生变化或变化没有达到预先规定的次数时,自诊断系统就确定该信号出现故障。例如:氧传感器的信号,不仅要求有信号电压和电压的变化,而且信号电压的变化频率在一定时间内要超过一定的次数(如某些车型要求要达到8次/10S),当小于此值时就会产生故障码,表示传感器响应过慢。
通过在碱性溶液中混合GO 和DA获得rGO-PDA。接下来,rGO-PDA通过席夫碱反应与 AAm 和 APMA 偶联,形成作为交联点的动态C-N键。另外,帧内/分子间氢键和NH3+-π,和π-π相互作用,发现RGO-PDA和PAAm-之间存在共-APMA,使水凝胶具有高断裂应力(~500 kPa)和高延展性(~1200%)。由于 PDA 的存在,所制备的水凝胶可以粘附在各种基材上,对皮肤的粘附强度约为 8kPa。压阻式传感器具有制备简单、能耗低、检测范围广等优点。因此,构建了一种电阻型rGO水凝胶传感器,该传感器能够响应外部应变和压力,具有出色的灵敏度和可重复性以及自愈性能。更重要的是,基于水凝胶的传感器可以监测人体运动,证实在人体健康监测方面的巨大潜力。
车内功能检测下来未发现任何异常,车身系统内存在两个故障码,故障显示为两后车轮转速传感器故障,还有一个历史故障,不过目前车子使用期间无影响,后期需要留意,必要时更换两后车轮转速传感器,大概费用200左右。
维修人员检测发动机控制单元,发现故障码P0121——加速踏板位置传感器故障。故障码可以清除。分别测量完全松开踏板和完全踩下踏板时的传感器电阻,发现与维修手册上的数值有差异。用手轻拍传感器时,测量值还会变成断路状态。拨开线束的护套,发现有一根导线是绞接的(图3),由于导体的氧化,已经出现了接触不良。
电磁炉故障维修笔记 苏泊尔电磁炉系列1 苏泊尔C21S202电磁炉苏泊尔C21S202电磁炉电路故障现象1:通电显示正常,放好锅开机,不能加热,显示“E1”,蜂鸣器鸣叫。故障原因:C003(5uF/400V)电容变质。分析与检修:因不知该机的故障代码,故只能按常规检查。打开机壳通电,用万用表测试5V、16V、IGBT管C极300Ⅴ电源,发现只有260V。断电拆下300Ⅴ滤波电容C003,发现底部有轻微的鼓包,更换后,故障消失。温馨提示:C003及加热线盘并联的高频谐振电容,均属于高压无极性电解电容,因长期工作在高电压、高温状态,其内电解液会逐渐消耗、电解质绝缘性会逐渐下降,电容表现为失效、容量下降、漏电、耐压性能变差,有的外在表现为鼓包、漏液。对于电解电容耐压性变差,指针表测试其充放电往往仍正常,这是因为指针表内的电池一般为1.5~3V。所以检测这类电容,用观察法和数字表电容挡测量效果更好。故障现象2:不通电。故障原因:FSD200、R90(22欧/2W)烧崩,保险管熔断。分析与检修:打开电磁炉,直观检查发现7个引脚U91的顶部烧崩,仅芯片、最大体积的R90烧崩掉一块。根据经验,电磁炉中的双列塑封7脚的U91型号多为FSD200的电源块,最大体积的电阻多是该电源块的供电限流电阻。虽然FSD很易损坏,但当地有时购买不到,工厂可能考虑到了这一点,在U91的附近预保留有一个双列8脚的IC块U92的位置,一般用于安装VIPer12A电源块。根据该机U91、U92两块所接其它器件和预备器件标号,确定电源电路与美的MC/TB一2005一Ⅴ1.00标准主板相同,并根据板中标注采用ⅤIPer12A电源块进行修复。方法如下:在检查D90正常的情况下,更换损坏的R90。拆除三极管Q90及所接的R94、C94、U91电源块。在U92位置安装上VIPer12A电源块,在D94位置安装型号为IN4148的二极管、将ZD90(15Ⅴ)稳压管拆掉,安装上18Vlv稳压管,用导线将R97短路,经此改动后电磁炉通电正常工作。2 苏泊尔C2102一B电磁炉苏泊尔C2102-B电磁炉电路故障现象:用户自述,接通电源时,听到机内“叭”响一声,电磁炉就无通电反应了,室内空气开关掉闸。故障原因:IGBT管击穿,Q2(8050)、Q3(8550)漏电。分析与检修:根据故障现象分析,应属于通电就将IGBT管击穿,原因是驱动电路或LM339组成功能电路有故障。打开电磁炉,用万用表电阻挡检查保险管、全桥正常,IGBT管3个极均击穿。继续检查驱动电路,发现Q2和Q3的E一C、C一B极间漏电电阻为200千欧,造成待机时18V电源通过Q2对IGBT管的G极提供很高的电压,IGBT管饱和导通,形成很大的电流,将IGBT管击穿。更换损坏的器件后,故障排除。3 苏泊尔C16BS电磁炉苏泊尔C16BS电磁炉电路故障现象1:有时加热启动困难、有时加热时好时坏,有时挑锅。故障原因:热熔胶漏电。分析与检修:CPU接收到开机指令,由1脚输出检锅信号,由8脚接收检锅信号在主回路的脉冲反馈信息、4脚接收检锅信号在主回路的电流反馈。当8脚回收检锅信号且单位时间内的脉冲数量少,同时4脚电压值达到规定值时,判断主回路能量消耗大,认为电磁炉的负载:锅具已放置好,自动转入加热状态。此时由CPU1脚输出高电位,使Q571截止,对其它电路的工作无影响;同时由10脚输出与用户设定功率相对应的PWM功率控制脉冲,经R105、C543送IC3 LM339的5脚,与4脚主回路检测值配合,在2脚形成相应的PWM功率控制信号,控制IC3 LM339的11脚电压,与10脚的振荡锯齿波比较,控制内比较器导通/截止时间,在13脚形成相应宽度的加热脉冲,经后级电路驱动lGBT管、C004、加热线盘组成的主回路工作,电磁炉开始加热。此电磁炉岀现的多种故障涉及的部位有:(1)T002及次级组成的主回路电流检测电路。(2)IC3 LM339的6、7、1脚组成的同步振荡锯齿波形成电路。(3)IC2 LM339的10、11、13脚组成的PAN(平底锅)检锅电路。打开电磁炉,用万用表测试T002次能电阻、D001、C008没发现异常。通电测5V等各电源正常,测IC3 LM339各脚电压正常。但测试中发现振荡电容C513、加热脉冲传输电容C601等附近有热熔胶。在电磁炉维修中遇到过热熔胶漏电引发故障,故去掉这两处的热熔胶后,通电开机,电磁炉所有故障均排除。故障现象2:功率不稳定。故障原因:C003(5uF/400V)变质。分析与检修:220Ⅴ电源经保险管、全桥BD01、扼流圈L001、电容C003组成的L型滤波、输出300Ⅴ直流。加热线圈L、高频谐振电容C004、IGBT管组成的主回路,在IGBT管G极加热脉冲的驱动下,被激励振荡,产生高频大电流流过加热线圈,使放在加热线盘上面的铁锅加热。该故障可能的原因有:(1)C003损坏,300V输出纹波大。(2)C004变质,它与加热线盘谐振形成的脉冲不稳定。(3)IGBT管G极的加热脉冲宽度不稳定,这既涉及LM339组成的各功能电路,又涉及互感器T002及次级所接的功率整定电路,还涉及CPU工作条件中的晶体。打开电磁炉,观察C003、C004无鼓包和漏液现象,用万用表测量T002次级、D001、C008、ⅤOL1没有发现异常。通电测CPU IC1的5脚为5V正常、LM339的3脚15V正常、IGBT管的C极电压仅为260V,测电源插座电压为215V,说明桥式整流输出有问题。拔掉电源插头,拆下C003检查,用数字表电容挡测试容量明显偏低。更换C003后,再测300V电源为315v。放锅开机,故障排除。故障现象3:开机,蜂鸣器每隔0.5s响3s。故障原因:IGBT管温度传感器开路。分析与检修:根据故障现象分析,是检测电路有故障。打开机壳,测试锅温传感器为80k欧,当时夏季温度较高,属于正常值。再测试IGBT管温度传感器,为无穷大。更换该温度传感器后,开机试验,电磁炉工作恢复正常。故障现象4:一通电风扇就运转。故障原因:三极管E一C极间击穿。分析与检修:按电磁炉软件程序设置,待机状态下,当CPU检测IGBT管温度过高、用户输入开机指令时,就会由6脚输出5V左右高电平,经R412后,使Q402饱和导通,驱动风扇得电工作。通电风扇就运转是Q402的E一C极间击穿或IGBT管温度采集电路有问题。拆下上盖,通电测试CPU的6脚电压,,为0V停转值。说明故障在风扇电机驱动电路,断电拆下Q402测试,E一C极间漏电,直接接通风扇电机回路,引起通电风扇就转。更换Q402后,故障排除。4 苏泊尔C20电磁炉故障现象1:通电显示正常,不放锅开机正常报警无锅,但放锅开机瞬间击穿IGBT管。故障原因:LM339坏,0.24uF/1200V电容变质。分析与检修:不放锅开机,IGBT管G极输入检锅脉冲,因检锅脉冲很窄且呈间歇性,在每个检锅脉冲周期里,IGBT管导通时间很短,接通加热线盘回路的时间很短,加热线盘存储的能量很少,在IGBT管截止期间,加热线盘存储的能量对0.24uF/1200Ⅴ充电至较低值时就释放完毕,其结果是主回路谐振脉冲幅度小,IGBT管的反峰电压(等于300V+高频谐振电容两端充电电压)较小,远远低于IGBT管的耐压值1200V。放锅开机,IGBT管G极输入加热脉冲,其特点是脉冲呈现连续性且宽度宽,激励IGBT管导通时间长,激励线盘与高频谐振电容的谐振频率在15KHz~40kHz高频状态,谐脉冲幅度达到数百伏以上,IGBT管的反峰电压高,非常接近IGBT管的耐压值。该故障可能发生的原因有:(1)0.24uF/1200Ⅴ容量小。(2)4uF/400V容量变小或漏电,使300V电源低且纹波大。(3)R30变大、Q8损坏,引发IGBT管过压保护电路失控。(4)R1、R2、R4阻值变大,使LM339的8、9、14脚同步控制电路失控。开壳,观察加热线盘接线柱附近的4uF/400V电容、0.24uF/1200V两个电容无异常。用万用表检查驱动管Q2和Q3、加热线盘两侧的大电阻R1~R4、R30、Q8阻值没有损坏。通电测5V、12V、300V均正常,再测LM339的多个引脚电压偏高,怀疑是LM339损坏,更换LM339后再测各脚电压基本正常,IGBT管G极电压随检锅声在0.7V~0Ⅴ跳变。放锅开机后,开始加热,但噪声大,又将IGBT管击穿。拆下0.24uF/1200V测其容量变小。更换此电容后,故障排除。故障现象2:不通电,用户自述,开机加热杂音大,几秒后突然自动断电。故障原因:0.24uF/1200V电容变质。分析与检修:电磁炉内发岀杂音的部位为电感性器件和工作在高电压状态的电解电容。具体包括:(1)风扇电机轴承、扇叶损坏。(2)开关变压器性能不良。(3)加热线盘流经的电流过大。(4)高频谐振电容0.24uF/1200V、300Ⅴ滤波电容4uF/1200Ⅴ、3.3uF/400V变质。根据经验,风扇电机用于IGBT管的散热,如有问题,电磁炉加热几分钟后,IGBT管温度才逐渐上升到允许值的上限值110摄氏度,不会造成在开机几秒内击穿IGBT管;开关变压器性能不良,主要表现是磁芯位置不对,不影响开关电源输出电压值,不会造成IGBT管击穿;加热线盘流经的电流过大,原因是IGBT管漏电或G极热脉冲过宽,后者涉及众多器件。本着先易后难的原则,检查IGBT管和项目(4)中的3个电解电容,发现0.24uF/1200Ⅴ底部有轻微鼓包,这是损坏的外在表现。更换后,故障排除。故障现象3:不通电。故障原因:R25(1兆欧)开路。分析与检修:220V电源经桥式整流滤波变换约300V,一路通过开关变压器送开关管Q6的C极,另一路通过R25对Q6的基极提供0.6V的导通电压,使Q6导通并与开关变压器、C13和R27正反馈器件配合,形成高频振荡脉冲,高频脉冲除反作用于Q6基极,使其电压表现为0.2Ⅴ或负压,还经开关变压器降压后由次级输出,由二极管、电容滤波变换为12Ⅴ,再由7805稳压为5V,由插头2脚启动主控板进入待机状态。该故障可能发生的原因有:(1)主控板问题。(2)保险管熔断。(3)开关管Q6、开关变压器及相关的开关电源器件损坏。(4)5V稳压器异常。打开电磁炉,直观检查没有发现明显异常器件。测保险管正常。通电测试插头的2脚5V、78L05的1脚12V不对,拔掉插头再测仍旧如此,说明故障在主板上的开关电源。测Q6的C极电压为315V正常,基极为0V,属于不具备振荡条件的值。又根据经验,开关电源不振荡,电磁炉中如300V电源不工作,其它电路均不工作,这样3.3uF/400V电容两端存储的300Ⅴ无处释放,在电磁炉断电后几分钟甚至更长时间保持。此种情况下,如果拆卸器件和万用表电阻测试器件,属于带电工作,是不允许的。为此,拔掉电源插头后,测试该电容两端电压并进行放电,当放电完毕后,检查R25、Q6,发现R25开路。更换后,电磁炉恢复正常工作。5 苏泊尔C19S01一A电磁炉故障现象:屡击穿IGBT管。故障原因:0.27uF/1200V电容损坏。分析与检修:此机原故障是不通电,经查为保险管熔断、IGBT管击穿,更换后,加热正常,长则使用1天,短则几分钟就会将IGBT管击穿。根据故障现象分析,此机属于IGBT管无规则击穿,可能是接触不良,也可能是主回路及300V供电滤波电容变质,引发IGBT管C极反峰脉冲不稳定。打开电磁炉,直观检查主板上体积最大的电容,发现0.27uF/1200V电容鼓包,这是损坏的表现。更换该电容、IGBT管后故障排除。