P+F洗车机传感器也可以使用单目视觉和里程计融合的方法。以里程计读数作为辅助信息,利用三角法计算特征点在当前机器人坐标系中的坐标位置,这里的三维坐标计算需要在延迟一个时间步的基础上进行。根据特征点在当前摄像头坐标系中的三维坐标以及它在地图中的世界坐标,来估计摄像头在世界坐标系中的位姿。这种降低了传感器成本,消除了里程计的累积误差,使得定位的结果更加精确。此外,相对于立体视觉中摄像机间的标定,这种方法只需对摄像机内参数进行标定,提高了系统的效率。

(P+F 超声波传感器 UC4000-30GM-IUR2-V15)

参数化接口,用于通过服务程序 ULTRA 3000 根据具体应用调整传感器设置,模拟电流和电压输出,同步选项,可调声功率和灵敏度,温度补偿

感应范围 : 200 ... 4000 mm
调整范围 : 240 ... 4000 mm
死区 : 0 ... 200 mm
标准目标板 : 100 mm x 100 mm
换能器频率 : 大约 85 kHz
响应延迟 : 最短 145 ms
440 ms,出厂设置
绿色 LED : 常亮:通电
闪烁:待机模式或程序功能检测到物体
黄色 LED 1 : 常亮:物体在评估范围内
闪烁:程序功能
黄色 LED 2 : 常亮:在检测范围内有物体时
闪烁:程序功能
红色 LED : 常亮:温度/编程插头未连接
闪烁:发生故障或编程功能没有检测到物体
温度/示教连接器 : 温度补偿 , 评估范围编程 , 输出功能设置
工作电压 : 10 ... 30 V DC ,纹波 10 %SS
功耗 : ≤ 900 mW
可用前的时间延迟 : ≤ 500 ms
接口类型 : RS 232, 9600 Bit/s , 无奇偶校验,8 个数据位,1 个停止位
同步 : 双向
0 电平 -UB...+1 V
1 电平:+4 V...+UB
输入阻抗:> 12 KOhm
同步脉冲:≥ 100 µs,同步脉冲间歇时间:≥ 2 ms
同步频率 :
输出类型 : 1 路电流输出 4 ...20 mA
1 路电压输出 0 ...10 V
分辨率 : 评估范围 [mm]/4000,但是 ≥ 0,35 mm
特性曲线的偏差 : ≤ 0,2 % 满量程值
重复精度 : ≤ 0,1 % 满量程值
负载阻抗 : 电流输出: ≤ 500 Ohm
电压输出: ≥ 1000 Ohm
温度影响 : ≤ 2 满量程值的 %(带温度补偿)
≤ 0.2%/K(无温度补偿)
符合标准 :
UL 认证 : cULus 认证,一般用途
CSA 认证 : 通过 cCSAus 认证,一般用途
CCC 认证 : 额定电压 ≤ 36 V 时,产品不需要 CCC 认证/标记
环境温度 : -25 ... 70 °C (-13 ... 158 °F)
存储温度 : -40 ... 85 °C (-40 ... 185 °F)
连接类型 : 连接器插头 M12 x 1 , 5 针
防护等级 : IP65
材料 :
质量 : 210 g
输出 : 评估极限 A1: 500 mm
评估极限 A2: 4000 mm
上升斜坡

威海洗车机传感器而基于光学传感器的vSLAM导航技术,则包括了基于RGBD的深度摄像机和基于单目、双目或者鱼眼摄像头这么两种方案,其中采用深度摄像机的vSLAM和激光SLAM类似,通过收集到的点云数据,能直接计算障碍物距离,采用单双目、鱼眼相机的vSLAM方案,则是利用多帧图像来估计自身的位姿变化,再通过累计位姿变化来计算距离物体的距离,并进行定位与地图构建。

原厂洗车机传感器在红外传感器与无人机平台集成过程中,可以利用惯性导航设备发送脉冲信号控制红外传感器采集数据或通过视频流地理编码[14]方法建立红外影像与位姿信息的映射关系。针对红外影像位姿信息已知的情况,首先将姿态信息利用文献[15]中方法转换为外方位角元素,结合影像内方位元素及测区高程实现影像的正射纠正,完成影像的粗配准。接着利用仿射尺度不变模型[3]对地理坐标进行微调,实现影像的精配准。该方法可快速实现红外影像之间的配准,只需少量的匹配点就可建立仿射变换关系,实现地理坐标的调整,效果如图3所示。

P+F洗车机传感器重要研发项目的进展及影响 1、工信部2016年智能制造综合标准化项目“机器人制造数字化车间制造单元与工艺研究与标准验证”课题项目主要针对机器人数字化车间生产制造单元的标准化、模块化、柔性化技术展开研发;研究面向机器人制造行业数字化车间的参考型标准和机器人数字化制造的工艺闭环数据模型;针对数字化机器人制造车间生产制造工艺,研究工艺的验证方法,搭建机器人制造数字化车间标准验证试验平台;完成《机器人制造数字化车间制造单元与工艺》标准的编制,并对其进行有效性验证,在工业机器人生产线中进行示范应用,确保标准的可用性、科学性和可操作性,为后续标准的制修订提供规范性和科学依据。 目前,该项目完成了《机器人制造数字化车间制造单元与工艺》标准编制说明、标准研究报告和标准草案的编制;完成了机器人制造数字化车间标准试验验证平台的搭建,在机器人生产现场对整个车间的单元与工艺、运行管理、设备的互联互通操作以及功能安全和信息安全相关功能进行应用验证,形成验证平台建设总结报告、验证平台验证报告、现场验证总结报告和现场验证报告,现已完成课题所有研发任务,正在进行项目结题验收工作。 2、工业和信息化部工业强基工程项目“智能工业机器人实时操作系统及软件包实施方案”项目项目主要是面向智能型工业机器人应用领域,实现嵌入式ARM控制器、X86控制器和高性能多核控制器产品,解决机器人实时操作系统及高性能运动控制、弧焊、点焊、力控制、视觉等软件模块,实现控制器产品在智能型工业机器人上应用,提高机器人运动性能,丰富机器人智能功能。建设嵌入式ARM控制器、X86控制器和高性能多核控制器三种控制器产品的生产线,在控制器基础上搭建机器人操作系统,实现12种以上的软件模块和应用软件工艺包,搭建产品测试验证平台,对控制器性能和功能进行测试,提高国产机器人市场竞争力,实现机器人控制器批量化生产与产业化应用。 目前,该项目完成了嵌入式ARM、X86和高性能多核控制器的开发,并开发了基于Linux的实时操作系统;完成了机器人运动控制、轨迹规划、视觉、力觉、点焊弧焊、码垛等12种以上的软件模块和应用软件工艺包开发,并完成各模块单元测试与验证;搭建并建设了双臂、焊接、打磨、装配、移动等智能工业机器人验证平台和嵌入式ARM、X86、高性能多核控制器产品生产线;完成了控制器在智能工业机器人上的性能与功能验证,提高了机器人运动性能,丰富了机器人智能功能,提升了国产机器人市场竞争力,实现了国产机器人控制器产品的批量生产与产业化应用,现已完成所有研发任务,正在申请项目结题验收。 3、发改委“新一代信息基础设施建设工程和互联网+”重大工程“工业机器人智能系统关键技术研究与应用”项目项目主要是依托新松公司智慧产业园柔性智能制造装备中心,开展工业机器人智能技术验证、产品开发与应用推广等工作,参加工业机器人智能系统关键技术攻关。该项目围绕新一代智能工业机器人的相关新理论、新方法,研究攻克机器人视觉识别定位、智能控制、互联网环境下的信息模型等共性关键技术;研制开发负载能力分别为10kg、20kg和50kg三种型号的新一代工业机器人产品,其核心零部件与整机通过国家机器人检测与评定中心(沈阳)测试;重点针对焊接、磨抛和机加等工业机器人典型应用领域的生产需求,将工业机器人智能系统的核心共性技术与面向具体行业的特殊应用相结合,研究专门的智能工艺系统,实现新一代智能工业机器人产品在换热器管线焊接、油烟机罩磨抛和三槽壳/钟形壳机加等自动化生产线上的推广应用。 目前,已完成面向焊接、磨抛和机加工等典型应用领域生产需求的负载能力分别为10kg、20kg和50kg三种具有自主知识产权的新一代工业机器人产品开发,搭建了智能点焊、磨抛、弧焊、多机器人协同作业、装配、搬运与码垛等机器人测试系统。基于开发的10kg、20kg和50kg工业机器人产品,完成了焊接、机加工和磨抛机器人智能工艺系统研究;完成了MES系统、自动化立体仓库建设和企业信息化软硬件升级;建立了焊接、机加工、磨抛机器人自动化生产线,实现了10kg、20kg和50kg新一代智能工业机器人在焊接、机罩磨抛和外壳机加等领域的推广应用,生产线综合效率提升30%以上。现已完成项目研发,正在进行关键技术研究报告的编制工作。 4、十三五国家重点研发计划“公共安全风险防控与应急技术装备”专项“无人应急救援装备关键技术研究与应用示范”项目项目面向重大事故灾难、自然灾害等突发事件中地面伤员抢运、空中环境侦测、海上紧急救助的实际需求,攻克地面伤员自主搜寻与定位、无人机高升阻比气动外形设计、无人船恶劣海况适应性、间歇遮蔽信道通讯与导航等关键技术,研制伤员抢运地面无人救援机器人、远程空中应急无人机及海上救助无人船装备,开展典型场景的范应用,推动应急救援装备技术和标准体系的建立。 目前,该项目完成了海陆空和信息化无人应急救援装备标准前期调研工作,确定了地面废墟搜救机器人通用技术条件、应急无人机整机试验方法、无人船海上救助应急预案编制导则等10项拟编制的无人应急救援装备相关国家/行业标准,现已完成2项标准发布、1项标准报批、6项标准正在立项和草案编制阶段;完成了地面伤员抢运机器人、远程空中应急无人机和海上救助无人船三大应急救援装备所有核心关键技术攻关、软硬件子系统开发与集成、工程样机开发、系统联调、测试及改进和应用示范方案的制定与环境初步搭建;为后续海陆空无人应急救援装备系统的功能、性能测试验证和示范应用提供了技术及平台支撑。 5、十三五国家重点研发计划“重大科学仪器设备开发”专项“工业机器人整机综合性能测试仪”项目项目针对机器人整机运动精度、控制系统性能、关节驱动性能、人体碰撞安全等测试需求,攻克基于立体视觉的空间六维位姿测量、机器人末端运动非接触式动态跟踪测量、多目标运动跟踪算法等关键技术,开发测量软件,研制机器人运动性能测量仪;攻克多轴同步实时测量、伺服精度与空间插补精度测量、实现单轴伺服性能测试等关键技术,研制机器人控制系统测试台;攻克关节测试的同步驱动与高精度动态自由加载、可变复杂工况的关节负载模拟等关键技术,研制驱动传感同步动态采集分析系统与关节测试台;攻克机器人-人体等效碰撞模型、机器人运动终止检测、机器人-人体运动等关键技术,研制人体碰撞安全评估系统。最终完成各测试台及系统的应用验证和集成开发,研制一整套具有自主知识产权、稳定可靠、视觉等核心部件国产化的工业机器人整机综合性能测试仪,并实现其产业化发展。 目前,该项目完成了所有有关工业机器人控制器测试台、运动性能测试仪、关节驱动性能测试仪和人体碰撞安全评估系统的工业机器人整机综合性能测试仪的软硬件关键技术攻关,解决了仪器开发过程中的关键技术难题,形成了仪器研制的详细设计方案,完成了核心软件模块及框架的编写,现已完成4套测试仪原理样机的成果转化和工程化开发、4套仪器功能和性能测试验证平台搭建;形成了2项企业标准、1项质量与可靠性企业规范初稿、1套仪器测试及验证大纲和1项产业化实施细则编制;为后续仪器应用验证、异地测试、第三方测试、示范应用和产业化推广提供了技术、标准和产品支撑。 6、十三五国家重点研发计划“重大科学仪器设备开发”专项“高分辨率角位移传感器研制与产业化”项目“可靠性设计及产品验证”课题项目通过高分分辨率角位移传感器在测试验证平台上进行的性能测试和整机长期运行可靠性测试,验证角位移传感器在机器人整机上的综合应用性能和设计可靠性。进行高分辨率角位移传感器可靠性设计、可靠性平台设计及产品验证和在线数据收集与产品优化设计,最终完成产品验证,为产品的改进和性能提升提供依据。 目前,该课题已完成“高分辨力角位移传感器”样机质量与可靠性总体方案和可靠性检验平台设计方案的编制;完成了“高分辨力角位移传感器”可靠性机器人验证平台(6轴,负载50kg)和机器人整机综合性能测试平台(重复定位精度、振动、温升、动力特性和轨迹特性测试)的搭建。目前,正准备进行机器人核心零部件可靠性强化试验。该验证及测试平台的搭建,实现了高分辨力角位移传感器在机器人整机中的应用性能对比测试和搭载角位移传感器的机器人性能参数的在线数据监测,为后续评价传感器对机器人整机性能影响、传感器与机器人本体结构的进一步优化和传感器产品稳定性及可靠性提升与改进,提供数据支撑及改进依据。 7、十三五国家重点研发计划“智能机器人”专项“机器人操作系统及开发环境研究与应用验证”项目“机器人操作系统应用验证”课题本课题以机器人操作系统的整体架构和统一运行环境为基础,在图形化的集成开发环境中进行各类机器人应用软件包的开发,搭建各类机器人的应用平台验证机器人操作系统各项功能和性能指标。由5家主机厂的开发人员在机器人操作系统运行框架的标准下、图形化集成开发环境中完成工业机器人、服务机器人、特种机器人的9种应用软件包:码垛、打磨、装配、焊接、机床上下料、冲压、喷涂等工业机器人工艺软件包;顾客引导等服务机器人应用软件包;地面侦查等特种机器人应用软件包。基于模型计算、轨迹规划、导航定位等多种通用机器人算法,研发各类机器人的不同应用功能。本课题将基于机器人操作系统和不同架构的硬件平台(ARM、X86),结合不同种类的机器人系统、外部设备和应用软件包,对本项目研究成果在5家课题参与单位的码垛、打磨、装配、焊接、上下料、冲压、喷涂、引导、地面侦查等9类机器人中进行应用验证。该项工作将充分验证机器人操作系统各项功能、性能指标,为本项目研发的机器人操作系统在国内机器人行业推广应用和产业化奠定扎实基础。 目前,基于项目组开发的机器人操作系统运行框架标准和图形化集成开发环境,课题现已完成焊接、打磨、冲压、机床上下料、装配、喷涂、码垛、引领和巡检等,共9种机器人工艺软件包的开发;基于机器人操作系统和ARM、X86架构的硬件平台,完成了焊接、打磨、冲压、机床上下料、装配、喷涂、码垛、引领和巡检等,共9种机器人操作系统应用验证平台搭建的总体方案设计,定义了软件框架、各通用模块和应用模块的功能划分及调用关系;完成了以上工业、引领服务和巡检机器人系统和应用软件包的集成开发,搭建了应用验证平台及环境,为后续机器人操作系统应用验证提供了平台和场地支撑。 8、十三五国家重点研发计划“智能机器人”专项“面向敬老院的老人辅助机器人研制与系统集成示范应用”项目“老人情感陪护机器人研制”课题本课题针对老人的情感陪护和日常交流需求,攻克基于人脸识别的老年人情绪辨识技术、养老陪护领域的语音交互和情感识别技术、机器人自主移动技术、机器人远程通讯互动技术和路径规划算法优化技术,开发精度更高、稳定性更好的导航算法和基于无线通信技术的远程视听通讯功能;研制具有情感辨识、语音辨识、语义理解等功能及可靠定位导航系统的情感陪护机器人,开展情感陪护机器人检测、标准制定,并进行示范应用。小批量生产和市场推广。 目前,课题已开展并完成了老人情感陪护需求调研和老人情感陪护机器人的方案设计,正在编制产品标准;完成了人脸识别系统、人脸表情识别算法、自主移动及路径规划算法、基于语音声学特征与情感模式的相关性和基于语音数据库的情绪识别等老人情感陪护机器人关键技术攻关,实现了机器人产品原理样机的开发与成果转化,为后续工程化改进、示范应用和市场推广奠定了产品基础。 9、十三五国家重点研发计划“智能机器人”专项“机器人系列化高精度谐波减速器开发及智能制造示范”项目“机器人谐波减速器系统匹配性及全生命周期性能评估研究”课题课题主要研究机器人谐波减速器系统匹配性及兼容性,谐波减速器全生命周期性能评估方法与手段;建立谐波减速器机器人综合性能测试平台,对安装在机器人整机上的国产减速器和进口减速器的应用性能进行关键指标对比测试,评价国产和进口减速器在整机上的性能表现;对安装国产谐波减速器的机器人进行整机测试,进行系统优化设计;实现国产谐波减速器在新一代工业机器人、服务机器人等不同领域的规模化应用。 目前,基于项目组开发的谐波减速器产品需求,课题已完成谐波减速器在线应用状态监测装置、谐波减速器全生命周期综合性能分析等关键技术的开发;针对机器人用谐波减速器的性能参数在线测控技术,完成了本地及远程服务器接口模块、传输技术、10kg工业机器人本体和平台软硬件的开发,搭建了机器人综合精度测量平台;正在进行远程端操控平台、数据库和数据分析系统的开发及20kg工业机器人本体和综合精度测量平台的开发与搭建,为后续谐波减速器关键指标对比测试与优化设计提供平台支撑。 年度经营计划在报告期内的执行情况 1、协作机器人增长潜力巨大 公司加大人工智能技术在机器人应用的投入,目前市场化应用最典型的为协作机器人系列产品。报告期内,公司加深与汽车、家电以及医疗行业客户的合作,实现协作机器人装配、检测、搬运等多项应用。公司持续增强产品影响力,加大产品的市场投放和推广,拓宽下游行业应用领域。公司积极建设协作机器人生产基地,完善生产制造的配套体系,为协作机器人产业化发展提供支持。 2、机器人新兴市场需求增加 随着新兴市场需求的崛起,公司依托焊接、喷涂、装配、磨抛、搬码等应用,着力拓展工程机械、煤机、船舶等一般工业领域的市场,与上述行业内的多家领先企业形成战略合作伙伴关系。此外,公司针对3C等行业的市场特点,大力推广轻量化工业机器人,凭借高精度、高速度的作业优势已经获得持续订单。公司根据用户特殊生产环境要求,为其提供防爆型机器人产品,成功开拓新市场。 3、数字化工厂拓展行业应用 公司继续深化数字化工厂解决方案在集装箱、厨卫、核工业、3C等多个领域的应用。公司坚持与战略合作伙伴密切交流,围绕客户的行业特点开拓合作模式,深度开发相关领域的数字化工厂服务。智能物流市场需求持续增长,公司保持技术与产品的领先水平,在传统优势行业继续增加市场份额外,继续拓展智能家居、医药、新能源电池等新兴市场,且进一步扩大海外客户群规模,与国际一流的厂商比肩。 4、增强半导体装备综合实力 公司围绕标准化、平台化、国际化的发展战略应对日益增长的国内泛半导体设备需求,扩张公司半导体产业规模。公司基于既有技术与产品积累,拓展产品序列并开发新一代产品,同时结合市场需求加强平台化系统解决方案的开发,提升市场影响力。2019年,公司作为国内唯一的真空机械手供应商,承接科技部02专项定向发布的《双臂真空机械手等集成电路装备关键零部件研发及产业化项目》,旨在攻克国际一流的新型多轴真空机械手新构型设计及高速高精度低震动控制技术,研发双臂真空机械手系列产品,打破国外新技术壁垒。

威海洗车机传感器Trifo Lucy的这两颗摄像头大有玄机,其中一颗为1080P HDR高清摄像头,另外一颗为主动光深度摄像头,这其实是目前基于光学传感器的vSLAM导航技术的最好方案。1080P HDR高清摄像头是利用多帧图像来估计自身的位姿变化,再通过累计位姿变化来计算距离物体的距离,并进行定位与地图构建,而光深度摄像头和激光SLAM类似,是通过收集到的点云数据来直接计算障碍物距离。

原厂洗车机传感器数据采集车由两个激光雷达和两个摄像头组成。传感器的参考坐标系和视野(FoV)如图2所示。车辆基架B位于车辆后轴的中心。激光雷达和摄像头的传感器读数在底架B中分别表示为LB k和CB k,其中k表示传感器在车辆中的位置。例如,LL和LR表示左前和右前激光雷达帧,来自GNSS的位姿信息在UTM在世界帧中发布,GNSS的IMU帧I如图2所示,所有传感器间转换都是使用之前的校准参数执行。

SLAM定义:Simultaneous Localization and Mapping(即时定位与地图构建),即机器人在完全未知的环境中创建地图,同时利用地图进行自主定位和导航的技术。按照使用的传感器类型的差异,又分为激光SLAM和视觉SLAM,其中激光SLAM基于激光反射测距进行即时定位与地图构建,一般从维度上分有二维、三维激光,根据实际使用有反射板和无反射板两种;视觉SLAM则是使用相机作为传感器,在一定的图像帧率下捕捉周围环境信息,获得一系列连续变化的图像,通过测算相机运动来获得当前时刻相机的位姿,并构建环境地图。

根据中国船级社在《智能船舶规范(2020)》中的描述,在开阔水域自主航行时,自主航行船舶应能够全天候感知、获取航行态势信息,包括风向风速、船身位姿、他船识别信息等。这些感知信息主要依赖于船载感知设备获得。目前,主流的智能船舶感知设备包括雷达、激光雷达、声呐、全球卫星导航系统(GNSS)、惯性导航系统(INS)以及视觉类传感器设备等。

二维码定位通过在区域中铺设二维码,利用AMR车载摄像头扫描解析地面二维码获取实时坐标,但是离散的铺设方式导致二维码导航无法持续获得高精度的定位结果。AMR上安装有轮式里程计和IMU(Inertial Measurement Unit,即惯性测量单元),这两种传感器可实时测量机器人的位姿增量,即使没有二维码修正,仅通过积分仍可根据之前的定位状态推算出机器人当前的位姿信息,这个过程被称为盲区推估(Dead Rockoning,简称DR),但DR过程存在累计误差,过长的位姿推估时间和距离将导致定位精度持续下降。因此,DR更多的被用于定位导航算法流程中的预测过程,通过外部准确的全局定位实现对其误差的修正。

1.1 地图采集车用来采集地图数据的车辆一般安装有一台或多台相机、激光、GNSS、IMU等多种传感器设备,并集成有电源系统、采集控制单元、前置运算的计算机等。通过这些设备可获得图像、点云、IMU空间位姿态等数据。将这些数据按一定规程可提取、生产制作地图所需要的各类信息。